Water Modulated Framework Flexibility in NH2-MIL-125: Highlights from 13C Nuclear Magnetic Resonance.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The influence of adsorbed water on the dynamics of the organic linker 1,4-benzenedicarboxylate (BDC) in the metal organic framework NH2-MIL-125 was examined by applying 13C Nuclear Magnetic Resonance (NMR) spectroscopy on samples loaded with different amounts of water. In particular, the analysis of (i) cross-polarization (CP) 13C Magic Angle Spinning (MAS) NMR spectra in terms of chemical shift and line width of the carbon signals, (ii) variable contact time 13C CP-MAS experiments, and (iii) longitudinal 13C relaxation times indicated that, upon hydration, a dynamic process occurring on the microseconds timescale accelerates. This process could be identified with the rotation of the BDC benzene ring about its C2 axis, with water competing with the carboxylic oxygen for hydrogen bonding with the aminic group. Other motions occurring at frequencies on the order of the 13C Larmor frequency, i.e. 75 MHz, which contribute to the flexibility of the three-dimensional network, were detected, and identified with the twisting, libration and translation of the BDC linker. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Heat Transfer Engineering is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)