Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Optimization of Data Assignment for Parallel Processing in a Hybrid Heterogeneous Environment Using Integer Linear Programming.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
In the paper we investigate a practical approach to application of integer linear programming for optimization of data assignment to compute units in a multi-level heterogeneous environment with various compute devices, including CPUs, GPUs and Intel Xeon Phis. The model considers an application that processes a large number of data chunks in parallel on various compute units and takes into account computations, communication including bandwidths and latencies, partitioning, merging, initialization, overhead for computational kernel launch and cleanup. We show that theoretical results from our model are close to real results as differences do not exceed 5% for larger data sizes, with up to 16.7% for smaller data sizes. For an exemplary workload based on solving systems of equations of various sizes with various compute-to-communication ratios we demonstrate that using an integer linear programming solver (lp_solve) with timeouts allows to obtain significantly better total (solver+application) run times than runs without timeouts, also significantly better than arbitrary chosen ones. We show that OpenCL 1.2's device fission allows to obtain better performance in heterogeneous CPU+GPU environments compared to the GPU-only and the default CPU+GPU configuration, where a whole device is assigned for computations leaving no resources for GPU management. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Computer Journal is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.