Endofungal Rhizobium species enhance arsenic tolerance in colonized host plant under arsenic stress.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Arsenic (As) is a toxic metalloid that is present in natural surroundings in many forms with severe consequences to sustainable agriculture and human health. Plant growth-promoting Rhizobia have been found involved in the induction of plant tolerance under various biotic and abiotic stresses. An endofungal Rhizobium species associated with arbuscular mycorrhizal fungi (AMF) Serendipita indica deploy beneficial role in the promotion of plant growth and tolerance against various biotic and abiotic stresses. In the current study, we have determined the role of endofungal Rhizobium species in protection of host plant growth under As stress. We observed that endofungal Rhizobium species strain Si001 tolerate AsV up to 25 mM and its inoculation enhances tomato seed germination and seedling growth. A hyper-colonization of Rhizobium species Si001 in tomato roots was observed under As stress and results in modulation of GSH and proline content with reduced ROS. Rhizobium species Si001 colonization in host plant recovered pigment contents (chlorophyll-a and chlorophyll-b up to 189.5% and 192%, respectively), photosynthesis (157%), and water use efficiency (166%) compared to As-treated plants. Interestingly, bacterial colonization results in 40% increased As accumulation in the root, while a reduction in As translocation from root to shoot up to 89% was observed as compared to As treated plants. In conclusion, endofungal Rhizobium species Si001 association with the host plant may improve plant health and tolerance against As stress with reduced As accumulation in the crop produce. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Archives of Microbiology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)