Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Determination of the Activity Inventory in the Structural Components of the Dalat Nuclear Research Reactor for Its Decommissioning Planning.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
This report presents the methods and calculated results of the activity inventory in the structural components of the Dalat Nuclear Research Reactor (DNRR). These components include the shielding concrete, the reactor tank, and its inside irradiated facilities; the thermal and thermalizing columns; and the horizontal channels. The MCNP5 code with a three-dimensional neutron transport model was used to calculate the neutron flux distribution, neutron energy spectrum at different locations, and activation cross sections of long-lived radioactive nuclides in activated major materials, including heavy concrete, reflection graphite, and aluminum of the reactor. The calculated results of the energy spectrum and activation cross sections of MCNP5 were used in the ORIGEN2.1 point depletion code to calculate the neutron-induced activity of activated materials at different time points by modeling the irradiation history and radioactive decay. Radioactivity of long-lived key activation products such as 41Ca, 60Co, 55Fe, 63Ni, and 152Eu was modeled, and volumes of radioactive waste mainly of ordinary concrete, graphite, and aluminum in the structural components of the reactor were estimated. Experimental results of neutron flux and specific activities of some typical nuclides such as 60Co, 152Eu, 55Fe, and 63Ni in activated aluminum samples showed good agreement with the calculated results. As part of the national regulation requirements, the obtained data have been used to develop the decommissioning plan for the operational DNRR, with an estimation of about 10 years before its permanent shutdown. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Science & Technology of Nuclear Installations is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.