Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque. The anionic coating affords NP-VHPK with significantly lower toxicity than uncoated NPs in both endothelial cells and red blood cells (RBCs). Following injection of NP-VHPK in ApoE−/− mice, Cy5-labelled IL-10 significantly accumulates in both whole aortas and aortic sinus sections containing plaque compared to injection with a non-targeted control. Furthermore, IL-10 gene delivery results in an attenuation of inflammation locally at the plaque site. NP-VHPK may thus have the potential to reduce the inflammatory component of atherosclerosis in a safe and effective manner. Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-laden plaques within vascular walls. Although treatments using drugs and antibodies are now beginning to address the inflammation in atherosclerosis, neither is sufficient for long-term therapy. In this paper, we introduce a strategy to deliver genes encoding the anti-inflammatory protein interleukin-10 (IL-10) in vivo. We showed that Branched Poly(ß-aminoester) carrying the IL-10 gene are able to localize specifically at the plaque via surface-functionalized targeting moieties against inflamed VCAM-1 and/or ICAM-1 and to facilitate gene transcription by ECs to increase the local concentration of the IL-10 within the plaque. To date, there is no report involving non-viral nanotechnology to provide gene-based therapies for atherosclerosis. [Display omitted] [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Acta Biomaterialia is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)