Temporal Predictability Modulates Cortical Activity and Functional Connectivity in the Frontoparietal Network in 6-Month-Old Infants.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Despite the abundance of behavioral evidence showing the interaction between attention and prediction in infants, the neural underpinnings of this interaction are not yet well understood. The endogenous attentional function in adults have been largely localized to the frontoparietal network. However, resting-state and neuroanatomical investigations have found that this frontoparietal network exhibits a protracted developmental trajectory and involves weak and unmyelinated long-range connections early in infancy. Can this developmentally nascent network still be modulated by predictions? Here, we conducted the first investigation of infant frontoparietal network engagement as a function of the predictability of visual events. Using functional near-infrared spectroscopy, the hemodynamic response in the frontal, parietal, and occipital lobes was analyzed as infants watched videos of temporally predictable or unpredictable sequences. We replicated previous findings of cortical signal attenuation in the frontal and sensory cortices in response to predictable sequences and extended these findings to the parietal lobe. We also estimated background functional connectivity (i.e., by regressing out task-evoked responses) to reveal that frontoparietal functional connectivity was significantly greater during predictable sequences compared to unpredictable sequences, suggesting that this frontoparietal network may underlie how the infant brain communicates predictions. Taken together, our results illustrate that temporal predictability modulates the activation and connectivity of the frontoparietal network early in infancy, supporting the notion that this network may be functionally available early in life despite its protracted developmental trajectory. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Cognitive Neuroscience is the property of MIT Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)