Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A knowledge representation model based on the geographic spatiotemporal process.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Knowledge graphs (KGs) represent entities and relations as computable networks, which is of great value for discovering hidden knowledge and patterns. Geographic KGs mainly describe static facts and have difficulty representing changes, greatly limiting their application in geographic spatiotemporal processes. By analyzing the spatiotemporal features and evolution of geographic elements, this study presents the geographic evolutionary knowledge graph (GEKG). Its representation model has five core elements: time, geographic event (geo-event), geographic entity (geo-entity), activity and property, and defines six relations: logical, semantic, evolutionary and temporal relation, participation and inclusion. It establishes a hierarchical cubical model structure and each temporal layer extends vertically and horizontally starting with the earliest geo-event. Vertical expansion refers to the connection between different kinds of element, such as the participation relation between geo-entities and geo-events. Horizontal expansion indicates the association between the same kinds of element, such as the semantic relation between geo-entities. For different layers, the spatiotemporal differences of elements produce the evolutionary relation. Finally, the comparison of GEKG with Yet Another Great Ontology (YAGO) and Geographic Knowledge Graph (GeoKG) shows that GEKG has more advantages in representing geographic evolutionary knowledge, revealing the evolution mechanism of geographic elements and the evolutionary reasons. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of International Journal of Geographical Information Science is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.