Local binary pattern and deep learning feature extraction fusion for COVID‐19 detection on computed tomography images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      The deadly coronavirus virus (COVID‐19) was confirmed as a pandemic by the World Health Organization (WHO) in December 2019. It is important to identify suspected patients as early as possible in order to control the spread of the virus, improve the efficacy of medical treatment, and, as a result, lower the mortality rate. The adopted method of detecting COVID‐19 is the reverse‐transcription polymerase chain reaction (RT‐PCR), the process is affected by a scarcity of RT‐PCR kits as well as its complexities. Medical imaging using machine learning and deep learning has proved to be one of the most efficient methods of detecting respiratory diseases, but to train machine learning features needs to be extracted manually, and in deep learning, efficiency is affected by deep learning architecture and low data. In this study, handcrafted local binary pattern (LBP) and automatic seven deep learning models extracted features were used to train support vector machines (SVM) and K‐nearest neighbour (KNN) classifiers, to improve the performance of the classifier, a concatenated LBP and deep learning feature was proposed to train the KNN and SVM, based on the performance criteria, the models VGG‐19 + LBP achieved the highest accuracy of 99.4%. The SVM and KNN classifiers trained on the hybrid feature outperform the state of the art model. This shows that the proposed feature can improve the performance of the classifiers in detecting COVID‐19. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Expert Systems is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)