Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag revealed epigenetic control of the cortical layer development and spatial patterning of cell types determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation, cell function, and fate decision in normal physiology and pathogenesis. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Science is the property of American Association for the Advancement of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)