Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Petschacher B;Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
- Source:
The Biochemical journal [Biochem J] 2005 Jan 01; Vol. 385 (Pt 1), pp. 75-83.
- Publication Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.
- Language:
English
- Additional Information
- Source:
Publisher: Published by Portland Press on behalf of the Biochemical Society Country of Publication: England NLM ID: 2984726R Publication Model: Print Cited Medium: Internet ISSN: 1470-8728 (Electronic) Linking ISSN: 02646021 NLM ISO Abbreviation: Biochem J Subsets: MEDLINE
- Publication Information:
Original Publication: London, UK : Published by Portland Press on behalf of the Biochemical Society
- Subject Terms:
- Abstract:
CtXR (xylose reductase from the yeast Candida tenuis; AKR2B5) can utilize NADPH or NADH as co-substrate for the reduction of D-xylose into xylitol, NADPH being preferred approx. 33-fold. X-ray structures of CtXR bound to NADP+ and NAD+ have revealed two different protein conformations capable of accommodating the presence or absence of the coenzyme 2'-phosphate group. Here we have used site-directed mutagenesis to replace interactions specific to the enzyme-NADP+ complex with the aim of engineering the co-substrate-dependent conformational switch towards improved NADH selectivity. Purified single-site mutants K274R (Lys274-->Arg), K274M, K274G, S275A, N276D, R280H and the double mutant K274R-N276D were characterized by steady-state kinetic analysis of enzymic D-xylose reductions with NADH and NADPH at 25 degrees C (pH 7.0). The results reveal between 2- and 193-fold increases in NADH versus NADPH selectivity in the mutants, compared with the wild-type, with only modest alterations of the original NADH-linked xylose specificity and catalytic-centre activity. Catalytic reaction profile analysis demonstrated that all mutations produced parallel effects of similar magnitude on ground-state binding of coenzyme and transition state stabilization. The crystal structure of the double mutant showing the best improvement of coenzyme selectivity versus wild-type and exhibiting a 5-fold preference for NADH over NADPH was determined in a binary complex with NAD+ at 2.2 A resolution.
- References:
Biochemistry. 1999 Jun 15;38(24):7856-64. (PMID: 10387026)
J Chromatogr B Biomed Sci Appl. 2000 Jan 14;737(1-2):195-202. (PMID: 10681056)
Curr Opin Biotechnol. 2000 Apr;11(2):187-98. (PMID: 10753763)
Chem Biol Interact. 2001 Jan 30;130-132(1-3):499-525. (PMID: 11306071)
Chem Biol Interact. 2001 Jan 30;130-132(1-3):583-95. (PMID: 11306077)
Biochemistry. 2001 Aug 28;40(34):10371-81. (PMID: 11513616)
Adv Biochem Eng Biotechnol. 2001;73:53-84. (PMID: 11816812)
Protein Eng. 2002 Feb;15(2):131-40. (PMID: 11917149)
Biochemistry. 2002 May 21;41(20):6226-36. (PMID: 12009883)
Biochemistry. 2002 Jun 4;41(22):6928-38. (PMID: 12033925)
Biochemistry. 2002 Jul 16;41(28):8785-95. (PMID: 12102621)
Appl Microbiol Biotechnol. 2002 Aug;59(4-5):436-42. (PMID: 12172606)
J Biol Chem. 2002 Nov 8;277(45):43433-42. (PMID: 12196534)
Eur J Biochem. 2002 Sep;269(18):4409-17. (PMID: 12230552)
J Biol Chem. 2003 May 23;278(21):19176-82. (PMID: 12624088)
J Biol Chem. 2003 May 23;278(21):19463-72. (PMID: 12637497)
Biochem J. 2003 Jul 15;373(Pt 2):319-26. (PMID: 12733986)
Metab Eng. 2003 Jan;5(1):16-31. (PMID: 12749841)
J Mol Biol. 2003 Jun 27;330(1):75-85. (PMID: 12818203)
Appl Microbiol Biotechnol. 2003 Oct;62(5-6):437-45. (PMID: 12838375)
Appl Environ Microbiol. 2003 Oct;69(10):6179-88. (PMID: 14532079)
Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509. (PMID: 14595523)
J Bacteriol. 2003 Dec;185(24):7031-5. (PMID: 14645261)
Biochemistry. 2003 Dec 16;42(49):14397-407. (PMID: 14661950)
Protein Sci. 2004 Feb;13(2):504-12. (PMID: 14718658)
J Biol Chem. 1991 Dec 15;266(35):24031-7. (PMID: 1748675)
Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9. (PMID: 2025413)
J Biol Chem. 1989 Feb 15;264(5):2912-9. (PMID: 2492527)
Nucleic Acids Res. 1989 Aug 25;17(16):6545-51. (PMID: 2674899)
Methods Enzymol. 1997;276:307-26. (PMID: 27754618)
Appl Biochem Biotechnol. 1987 Mar;14(2):147-97. (PMID: 3304160)
J Biol Chem. 1995 Jul 14;270(28):16911-7. (PMID: 7622508)
J Biol Chem. 1994 Jan 21;269(3):2183-8. (PMID: 8294474)
Biochemistry. 1996 May 7;35(18):5670-8. (PMID: 8639526)
Biochemistry. 1996 Jun 18;35(24):7715-30. (PMID: 8672472)
Curr Opin Struct Biol. 1995 Dec;5(6):775-83. (PMID: 8749365)
Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12171-6. (PMID: 8901552)
Biochem J. 1997 Feb 15;322 ( Pt 1):89-93. (PMID: 9078247)
Adv Biochem Eng Biotechnol. 1997;58:145-84. (PMID: 9103913)
Biochem J. 1997 Sep 15;326 ( Pt 3):625-36. (PMID: 9307009)
Biochem J. 1997 Sep 15;326 ( Pt 3):683-92. (PMID: 9307017)
Biochemistry. 1998 Jan 27;37(4):1116-23. (PMID: 9454604)
FEMS Microbiol Lett. 1998 Feb 1;159(1):107-12. (PMID: 9485600)
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6768-73. (PMID: 9618487)
Arch Biochem Biophys. 1998 Jul 15;355(2):137-44. (PMID: 9675019)
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. (PMID: 9757107)
J Mol Biol. 1998 May 22;278(5):967-81. (PMID: 9836873)
- Grant Information:
R01 GM066135 United States GM NIGMS NIH HHS; GM66135 United States GM NIGMS NIH HHS
- Molecular Sequence:
PDB 1SM9
- Accession Number:
0 (Recombinant Proteins)
0U46U6E8UK (NAD)
53-59-8 (NADP)
681HV46001 (Ribose)
A1TA934AKO (Xylose)
EC 1.1.1.21 (Aldehyde Reductase)
K72T3FS567 (Adenosine)
- Publication Date:
Date Created: 20040824 Date Completed: 20050628 Latest Revision: 20181227
- Publication Date:
20221213
- Accession Number:
PMC1134675
- Accession Number:
10.1042/BJ20040363
- Accession Number:
15320875
No Comments.