Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Improving feature selection performance for classification of gene expression data using Harris Hawks optimizer with variable neighborhood learning.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Qu, Chiwen; Zhang, Lupeng; Li, Jinlong; Deng, Fang; Tang, Yifan; Zeng, Xiaomin; Peng, Xiaoning
- Source:
Briefings in Bioinformatics; Sep2021, Vol. 22 Issue 5, p1-20, 20p
- Subject Terms:
- Additional Information
- Abstract:
Gene expression profiling has played a significant role in the identification and classification of tumor molecules. In gene expression data, only a few feature genes are closely related to tumors. It is a challenging task to select highly discriminative feature genes, and existing methods fail to deal with this problem efficiently. This article proposes a novel metaheuristic approach for gene feature extraction, called variable neighborhood learning Harris Hawks optimizer (VNLHHO). First, the F -score is used for a primary selection of the genes in gene expression data to narrow down the selection range of the feature genes. Subsequently, a variable neighborhood learning strategy is constructed to balance the global exploration and local exploitation of the Harris Hawks optimization. Finally, mutation operations are employed to increase the diversity of the population, so as to prevent the algorithm from falling into a local optimum. In addition, a novel activation function is used to convert the continuous solution of the VNLHHO into binary values, and a naive Bayesian classifier is utilized as a fitness function to select feature genes that can help classify biological tissues of binary and multi-class cancers. An experiment is conducted on gene expression profile data of eight types of tumors. The results show that the classification accuracy of the VNLHHO is greater than 96.128% for tumors in the colon, nervous system and lungs and 100% for the rest. We compare seven other algorithms and demonstrate the superiority of the VNLHHO in terms of the classification accuracy, fitness value and AUC value in feature selection for gene expression data. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Briefings in Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.