Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1−xN/GaN heterostructures.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Epitaxial multilayer heterostructures of ScxAl1−xN/GaN with Sc contents x = 0.11–0.45 are found to exhibit significant differences in structural quality, chemical impurity levels, and electronic properties depending on the starting Sc source impurity levels. A higher purity source leads to a 2–3 orders of magnitude reduction in the carbon, oxygen, and fluorine unintentional doping densities in MBE-grown ScxAl1−xN/GaN multilayers. Electrical measurements of ScxAl1−xN/n+GaN single heterostructure barriers show a 5–7 orders of magnitude reduction in the electrical leakage for films grown with a higher purity Sc source at most Sc contents. The measured chemical and electrical properties of epitaxial ScxAl1−xN highlight the importance of the starting Sc source material purity for epitaxial device applications that need these highly piezoelectric and/or ferroelectric transition-metal nitride alloys. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of APL Materials is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)