Respiratory virus deterrence induced by modified mask filter.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Airborne transmission of infectious respiratory pathogens is a significant health hazard for the general public as well as healthcare professionals. Face masks have been frequently utilized as safety measures to limit the transmission of these infectious aerosolized particles. However, the efficacy of face masks in reducing respiratory virus infectivity and pathogenicity is unknown. Improving the effectiveness of masks in blocking viruses is urgently needed. In this study, surgical mask filters were modified by coating the filters with 1, 3, or 5 M of sodium dihydrogen phosphate, and subsequently exposed to the aerosolized respiratory influenza viruses (A/H3N2, A/H5N1) generated by a nebulizer set. Mask filter modification significantly reduced the size and counts of filter pores, which enabled entrapment of 40–60% of aerosolized viruses (captured viruses) with more than 90% of the captured viruses losing their infectivity. Upon contact with the coated mask filters, both the captured viruses and the viruses that managed to bypass the filter pore (passed viruses) were found to be inactivated. Passed viruses demonstrated significantly reduced pathogenicity in mice as indicated by significantly reduced lung virus titers, bodyweight loss, and prolonged survival compared to bare control. These findings highlight the potential of modified mask filters for reducing viral activity and pathogenicity, which contributes to improving facial mask efficacy as well as limiting airborne pathogen transmission. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)