Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Evaluating Two Dioscin-Based Silica Stationary Phases and their Application to Achiral and Chiral Separations.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
In a previous study, polyphyllin III, an important natural dioscin ingredient, was bonded to silica particles using the "one-pot method" for preparing a stationary phase, called SP-D. SP-D was further modified to produce two stationary phases, namely the phenyl isocyanate-dioscin (Phe-D) and 3,5-dimethyl phenyl isocyanate-dioscin bonded silica stationary phase (DMP-D), respectively. The Phe-D and DMP-D were evaluated by achiral and chiral analytes. The high performance liquid chromatography (HPLC) method was optimized and applied to the analysis of the main active ingredient, polyphyllins, that were contained in gongxuening capsules, a traditional Chinese medicine (TCM) widely used to treat gynecological diseases. The two synthesized stationary phases were also applied to the separation of the amino acid (AA) enantiomers. For this study, 10 a-AAs (lysine, leucine, cysteine, arginine, isoleucine, threonine, serine, valine, alanine, and histidine) were selected and studied for chiral separation using Phe-D and DMP-D stationary phases. In this study, 10 observed AA enantiomers were separated to different degrees on at least one stationary phase whereas four AAs were enantioseparated on both Phe-D and DMP-D. These results indicated that the two synthesized stationary phases have potential applicability in quality control (QC) of TCM and chiral separation as well as offering a new application choice for analyses of natural products. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of LC-GC North America is the property of MJH Life Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.