Urinary titin as a biomarker in Fukuyama congenital muscular dystrophy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      • Urinary titin could indicate motor function in Fukuyama muscular dystrophy. • Urinary titin in Fukuyama muscular dystrophy was high compared with that in controls. • Urinary titin correlated with serum CK level in Fukuyama muscular dystrophy. Fukuyama congenital muscular dystrophy (FCMD) is the second most prevalent childhood-onset muscular dystrophy in Japan. It is an autosomal recessive disorder caused by the fukutin mutation (FKTN), characterized by muscle wasting and brain abnormalities. So far, serum creatine kinase (CK) is recognized as the only biomarker for FCMD. Recently, an ELISA assay to quantify the N-terminal fragment of titin in urine was developed. Urinary titin concentration is elevated in patients with Duchenne muscular dystrophy (DMD) compared to normal controls. Levels vary according to age with excellent sensitivity and specificity for detecting DMD, and they can be used as a diagnostic and disease progression marker. In this study, we measured the urinary titin concentration of 18 patients with FCMD. It was remarkably higher than normal controls and correlated with CK. Especially in homozygotes, the score for gross motor function measure, which is a quantitative motor scale for FCMD, was correlated with urinary titin concentration. Elevated urinary titin concentrations were thought to be reflective of a common pathophysiology with DMD. Urinary titin concentrations can assist with making the diagnosis of FCMD and to estimate the patient's motor function at that point. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Neuromuscular Disorders is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)