Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Background: Pesticides play an important role in protecting the food supply and the public's health from pests and diseases. By their nature, pesticides can be toxic to unintended target organisms. Changing winds contribute to pesticide drift- the off-target movement of pesticides-and can result in occupational and bystander illness.Methods: We systematically linked historical weather data to documented pesticide drift illnesses. We used Washington State Department of Health data to identify 252 drift events that included 690 confirmed cases of illness from 2000 to 2015. To characterize wind speed and direction at the time of the events, we paired these data with meteorological data from a network of 171 state weather stations. We report descriptive statistics and the spatio-temporal extent of drift events and compare applicator-reported weather conditions to those from nearby meteorological stations.Results: Most drift events occurred in tree fruit (151/252 = 60%). Ground spraying and aerial applications accounted for 68% and 23% of events, respectively; 69% of confirmed cases were workers, and 31% were bystanders. Confirmed cases were highest in 2014 (129) from 22 events. Complete applicator spray records were available for 57 drift events (23%). Average applicator-reported wind speeds were about 0.9 m •sec- 1 (2 mi •hr- 1) lower than corresponding speeds from the nearest weather station values.Conclusions: Drift events result from a complex array of factors in the agricultural setting. We used known spatio-temporal aspects of drift and historical weather data to characterize these events, but additional research is needed to put our findings into practice. Particularly critical for this analysis is more accurate and complete information about location, time, wind speed, and wind direction. Our findings can be incorporated into new training materials to improve the practice of pesticide application and for better documentation of spray drift events. A precision agriculture approach offers technological solutions that simplify the task of tracking pesticide spraying and weather conditions. Public health investigators will benefit from improved meteorological data and accurate application records. Growers, applicators, and surrounding communities will also benefit from the explanatory and predictive potential of wind ramping studies. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Environmental Health: A Global Access Science Source is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)