Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Prospective validation of a model‐informed precision dosing tool for vancomycin in intensive care patients.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Heine, Rob (AUTHOR); Keizer, Ron J. (AUTHOR); Steeg, Krista (AUTHOR); Smolders, Elise J. (AUTHOR); Luin, Matthijs (AUTHOR); Derijks, Hieronymus J. (AUTHOR); Jager, Cornelis P.C. (AUTHOR); Frenzel, Tim (AUTHOR); Brüggemann, Roger (AUTHOR)
- Source:
British Journal of Clinical Pharmacology. Dec2020, Vol. 86 Issue 12, p2497-2506. 10p.
- Additional Information
- Subject Terms:
- Abstract:
Aims: Vancomycin is an important antibiotic for critically ill patients with Gram‐positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model‐informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model‐informed precision dosing of vancomycin in critically ill patients. Methods: We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results: We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72–11.96%) and 19.8% (95% confidence interval 17.47–22.13%). Conclusion: Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model‐informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model‐informed precision dosing in the clinic. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of British Journal of Clinical Pharmacology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.