Tailoring PDMS microfluidic channel surfaces for improved cell adhesion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Microfluidic on-chip platforms for cell biomechanics investigations have become very popular in the field of fundamental cell and tissue engineering. Polydimethylsiloxane (PDMS) is widely used fabrication material for such biological microfluidic applications because of its versatile nature, optical transparency, ease to replicate fine microarchitechtures and tunable mechanical properties by varying base to crosslinker ratio. However, the hydrophobic surface of native PDMS often provides unfavourable conditions for cellular attachment. Although plasma-treatment and protein physisorption methods enhances the initial cell adhesion but they are short-lived. This paper focuses on tailoring a biocompatible PDMS surface for long-term cell culture by using (3-Aminopropyl)triethoxysilane as a linking agent between PDMS and protein. Characterization of APTES+Gelatin treated PDMS surfaces has revealed changes in surface wettability, surface free energy and surface roughness as compared to pristine PDMS surface. These physico-chemical changes contribute to enhanced endothelial cell attachment and proliferation. This tailored PDMS surface can significantly prolong the cell-culture compatibility of PDMS-based microfluidic devices for mechano-biological studies and in vitro organ modeling. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)