Existence, uniqueness and stability of transition fronts of non-local equations in time heterogeneous bistable media.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The present paper is devoted to the study of the existence, the uniqueness and the stability of transition fronts of non-local dispersal equations in time heterogeneous media of bistable type under the unbalanced condition. We first study space non-increasing transition fronts and prove various important qualitative properties, including uniform steepness, stability, uniform stability and exponential decaying estimates. Then, we show that any transition front, after certain space shift, coincides with a space non-increasing transition front (if it exists), which implies the uniqueness, up-to-space shifts and monotonicity of transition fronts provided that a space non-increasing transition front exists. Moreover, we show that a transition front must be a periodic travelling front in periodic media and asymptotic speeds of transition fronts exist in uniquely ergodic media. Finally, we prove the existence of space non-increasing transition fronts, whose proof does not need the unbalanced condition. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of European Journal of Applied Mathematics is the property of Cambridge University Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)