Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Tooth segmentation and gingival tissue deformation framework for 3D orthodontic treatment planning and evaluating.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
In this study, we propose an integrated tooth segmentation and gingival tissue deformation simulation framework used to design and evaluate the orthodontic treatment plan especially with invisible aligners. Firstly, the bio-characteristics information of the digital impression is analyzed quantitatively and demonstrated visually. With the derived information, the transitional regions of tooth-tooth and tooth-gingiva are extracted as the solution domain of the segmentation boundaries. Then, a boundary detection approach is proposed, which is used for the tooth segmentation and region division of the digital impression. After tooth segmentation, we propose the deformation simulation framework driven by energy function based on the biological deformation properties of gingival tissues. The correctness and availability of the proposed segmentation and gingival tissue deformation simulation framework are demonstrated with typical cases and qualitative analysis. Experimental results show that segmentation boundaries calculated by the proposed method are accurate, and local details of the digital impression under study are preserved well during deformation simulation. Qualitative analysis results of the gingival tissues' surface area and volume variations indicate that the proposed gingival tissue deformation simulation framework is consistent with the clinical gingival tissue deformation characteristics, and it can be used to predict the rationality of the treatment plan from both visual inspection and numerical simulation. The proposed tooth segmentation and gingival tissue deformation simulation framework is shown to be effective and has good practicability, but accurate quantitative analysis based on clinical results is still an open problem in this study. Combined with tooth rearrangement steps, it can be used to design the orthodontic treatment plan, and to output the data for production of invisible aligners. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Medical & Biological Engineering & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.