Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fluorine biocatalysis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
The introduction of fluorine atoms into organic molecules has received considerable attention as these organofluorines have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of synthetic C–F forming methodologies, selective fluorination is still extremely challenging. Therefore, a biotransformation approach using fluorine biocatalysts is needed to selectively introduce fluorine into structurally diverse molecules. Yet, there are few ways that enable incorporation of fluorine into structurally complex bioactive molecules. One is to extend the substrate scope of the existing enzyme inventory. Another is to expand the biosynthetic pathways to accept fluorinated precursors for producing fluorinated bioactive molecules. Finally, an understanding of the physiological roles of fluorometabolites in the producing microorganisms will advance our ability to engineer a microorganism to produce novel fluorinated commodities. Here, we review the fluorinase biotechnology and fluorine biocatalysts that incorporate fluorine motifs to generate fluorinated molecules, and highlight areas for future developments. Image 1 [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Current Opinion in Chemical Biology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.