Abstract: The purpose of this study was to evaluate the effects of diosgenin on the D-galactose-induced cerebral cortical widely dispersed apoptosis. Male 12-week-old Wistar rats were divided into four groups: Control (1 mg/kg/day of saline, i.p.), DD0 (150 mg/kg/day of D-galactose, i.p.), DD10, and DD50 (D-galactose + 1 0 or 50 mg/kg/day of diosgenin orally). After eight weeks, histopathological analysis, positive TUNEL and Western blotting assays were performed on the excised cerebral cortex from all four groups. The TUNEL-positive apoptotic cells, the components of Fas pathway (Fas, FADD, active caspase-8 and active caspase-3), and mitochondria pathway (t-Bid, Bax, cytochrome c , active caspase-9 and active caspase-3) were increased in the DD0 group compared with the control group, whereas they were decreased in the DD50 group. The components of survival pathway (p-Bad, Bcl-2, Bcl-xL, IGF-1, p-PI3K and p-AKT) were increased in the DD50 group compared to the control group, whereas the levels of Bcl-xL, p-PI3K, and p-AKT were also compensatorily increased in the DD0 group compared to the control group. Taken together, diosgenin suppressed D-galactose-induced neuronal Fas-dependent and mitochondria-dependent apoptotic pathways and enhanced the Bcl-2 family associated pro-survival and IGF-1-PI3K-AKT survival pathways, which might provide neuroprotective effects of diosgenin for prevention of the D-galactose-induced aging brain. [ABSTRACT FROM AUTHOR]
No Comments.