Site‐specific recombinase genome engineering toolkit in maize.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Site‐specific recombinase enzymes function in heterologous cellular environments to initiate strand‐switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium‐mediated transformation of T‐DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Plant Direct is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)