Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Long-run expectations in a learning-to-forecast experiment: a simulation approach.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
In this paper, we elicit short-run as well as long-run expectations on the evolution of the price of a financial asset in a Learning-to-Forecast Experiment (LtFE). Subjects, in each period, have to forecast the the asset price for each one of the remaining periods. The aim of this paper is twofold: first, we fill the gap in the experimental literature of LtFEs where great effort has been devoted to investigate short-run expectations, i.e. one step-ahead predictions, while there are no contributions that elicit long-run expectations. Second, we propose a new computational algorithm to replicate the main properties of short and long-run expectations observed in the experiment. This learning algorithm, called Exploration-Exploitation Algorithm, is based on the idea that agents anchor their expectations around the last realized price rather than on the fundamental value, with a range proportional to the past observed price volatility. When compared to the Heuristic Switching Model, our algorithm performs equally well in describing the dynamics of short-run expectations and the realized price dynamics. The EEA, additionally, is able to reproduce the dynamics long-run expectations. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Journal of Evolutionary Economics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.