The acclimation of leaf photosynthesis of wheat and rice to seasonal temperature changes in T‐FACE environments.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Crops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Global Change Biology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)