Red blood cell transfusion results in adhesion of neutrophils in human endotoxemia and in critically ill patients with sepsis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Red blood cell (RBC) transfusion is associated with adverse effects, which may involve activation of the host immune response. The effect of RBC transfusion on neutrophil Reactive Oxygen Species (ROS) production and adhesion ex vivo was investigated in endotoxemic volunteers and in critically ill patients that received a RBC transfusion. We hypothesized that RBC transfusion would cause neutrophil activation, the extent of which depends on the storage time and the inflammatory status of the recipient.Study Design and Methods: Volunteers were injected with lipopolysaccharide (LPS) and transfused with either saline, fresh, or stored autologous RBCs. In addition, 47 critically ill patients with and without sepsis receiving either fresh (<8 days) or standard stored RBC (2-35 days) were included. Neutrophils from healthy volunteers were incubated with the plasma samples from the endotoxemic volunteers and from the critically ill patients, after which priming of neutrophil ROS production and adhesion were assessed.Results: In the endotoxemia model, ex vivo neutrophil adhesion, but not ROS production, was increased after transfusion, which was not affected by RBC storage duration. In the critically ill, ex vivo neutrophil ROS production was already increased prior to transfusion and was not increased following transfusion. Neutrophil adhesion was increased following transfusion, which was more notable in the septic patients than in non-septic patients. Transfusion of fresh RBCs, but not standard issued RBCs, resulted in enhanced ROS production in neutrophils.Conclusion: RBC transfusion was associated with increased neutrophil adhesion in a model of human endotoxemia as well as in critically ill patients with sepsis. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Transfusion is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)