Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Polymeric carbon nitride (PCN) is usually synthesized from nitrogen‐rich monomers such as cyanamide, melamine, and urea, but is rather disordered in many cases. Now, a new allotrope of carbon nitride with internal heterostructures was obtained by co‐condensation of very electron poor monomers (for example, 5‐amino‐tetrazole and nucleobases) in the presence of mild molten salts (for example, NaCl/KCl) to mediate the polymerization kinetics and thus modulate the local structure, charge carrier properties, and most importantly the HOMO and LUMO levels. Results reveal that the as‐prepared NaK‐PHI‐A material shows excellent photo‐redox activities because of a nanometric hetero‐structure which enhances visible light absorption and promotes charge separation in the different domains. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Angewandte Chemie International Edition is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)