Protective HLA alleles are associated with reduced LPS levels in acute HIV infection with implications for immune activation and pathogenesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag. Furthermore, these HLA class I alleles were associated with reduced levels of lipopolysaccharide (LPS) in the plasma during acute infection. Elevated LPS levels measured early in infection predicted accelerated CD4+ T cell decline, as well as immune activation and exhaustion. Taken together, these data suggest novel mechanisms for HLA-mediated immune control of HIV-1 pathogenesis that do not necessarily involve significant control of early viremia and point to microbial translocation as a direct driver of HIV-1 pathogenesis rather than simply a consequence. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS Pathogens is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)