Antihypertensive activity, toxicity and molecular docking study of newly synthesized xanthon derivatives (xanthonoxypropanolamine).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Context: Xanthone derivatives have been reported to possess a wide range of biological properties. In effort to search new effective antihypertensive compounds, we have synthesizednovel xanthone derivatives (xanthonoxypropanolamines) and got patent for these compounds (The Patent Office, Government of India, S. No.: 011–016308, Patent No.: 250538). Objective: In the present work, we attempted to establish the antihypertensive activity, toxicity and molecular docking study forthese newly synthesized compounds (1a, 1b and 2). Materials and method: The preliminary antihypertensive screening was performed by administering synthesized compounds and standard drugs intraperitonially and orally into wistar rats. The change in systolic, diastolic and the mean blood pressure before and after the treatment of the drugs was measured on a Digital LE-S100 Blood Pressure Meter by Tail-cuff method non-invasively. Toxicity studies were carried out after oral administration of synthesized compounds to rats at doses of 25, 50, and 100mg/kg. The serum samples were tested for different toxicity parameters such as liver function test, kidney function test etc. The docking simulations of all the compounds were performed using Maestro, version 9.4 implemented from Schrodinger software suite. Results and discussion: The result showed that the compound 1a, 1b and 2 have greater antihypertensive activity with almost equal or less toxicity profile in comparison to standard drug Propranolol and Atenolol. The docking score for the compound 1b was found -9.1 while for compound 1a and 2 were found -8.7 and -8.6 respectively. Conclusion: These novel compounds i.e. 1a, 1b, and 2 have greater antihypertensive activity in comparison to standard drugs Propranolol and Atenolol. All these compounds do not have any toxicity. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)