Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The impact of DNA methylation on the cancer proteome.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Magzoub, Majed Mohamed; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier
- Source:
PLoS Computational Biology; 7/29/2019, Vol. 15 Issue 7, p1-19, 19p, 2 Diagrams, 4 Charts, 2 Graphs
- Subject Terms:
- Additional Information
- Abstract:
Aberrant DNA methylation disrupts normal gene expression in cancer and broadly contributes to oncogenesis. We previously developed MethylMix, a model-based algorithmic approach to identify epigenetically regulated driver genes. MethylMix identifies genes where methylation likely executes a functional role by using transcriptomic data to select only methylation events that can be linked to changes in gene expression. However, given that proteins more closely link genotype to phenotype recent high-throughput proteomic data provides an opportunity to more accurately identify functionally relevant abnormal methylation events. Here we present a MethylMix analysis that refines nominations for epigenetic driver genes by leveraging quantitative high-throughput proteomic data to select only genes where DNA methylation is predictive of protein abundance. Applying our algorithm across three cancer cohorts we find that using protein abundance data narrows candidate nominations, where the effect of DNA methylation is often buffered at the protein level. Next, we find that MethylMix genes predictive of protein abundance are enriched for biological processes involved in cancer including functions involved in epithelial and mesenchymal transition. Moreover, our results are also enriched for tumor markers which are predictive of clinical features like tumor stage and we find clustering using MethylMix genes predictive of protein abundance captures cancer subtypes. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of PLoS Computational Biology is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.