Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      The objective of this study was to develop predictive models for describing the inoculated Salmonella reductions on chicken during the scalding process in China. Salmonella reductions on chicken breasts at a 100 s treatment were 1.12 ± 0.07, 1.38 ± 0.01, and 2.17 ± 0.11 log CFU/g at scalding temperatures of 50, 60 and 70 °C, respectively. For chicken wingettes, 0.87 ± 0.02, 0.99 ± 0.14 and 1.11 ± 0.17 log CFU/g reductions were obtained at 50, 60 and 70 °C after the 100 s treatment, respectively. Greater bacterial reductions were observed on chicken breasts than on chicken wingettes (p < 0.05). A logistic (−1.12, 0.06) distribution could describe the bacterial reductions on chicken breasts at 50–60 °C. Weibull, exponential and log-linear models were compared for describing the bacterial reduction on chicken breasts at 70 °C and the Weibull model showed the best fit as indicated by the pseudo-R2, root mean square error (RMSE) and standard error of prediction (SEP) values. For chicken wingettes, a logistic (−0.95, 0.07) distribution could be used to describe the bacterial reduction at 50–70 °C. The developed predictive models could provide parts of the input data for microbial risk assessment of the poultry supply chain in China. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Microorganisms is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)