Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L−1 butyrate, 8.95 g L−1 3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Applied Microbiology & Biotechnology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.