Distortional buckling of a CFS channel section with and without stiffened flanges.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Cold-formed steel (CFS) sections are commonly applied to modern engineering structures, such as roof truss, purlin and industrial goods rack. This study proposes an analytical model to investigate the distortional buckling behavior of CFS-lipped channel sections considering two load scenarios (i.e., axial compression and pure bending). The formulae and analytical solution for calculating the distortional buckling critical stress of CFS channel sections are derived on the basis of the total potential energy principle. The proposed model is extended to the channel section columns and beams with a stiffened flange. CUFSM and generalized beam theory (GBT) are used to conduct numerous channel section columns and beams to validate the proposed method. Results obtained from the proposed model are compared with those calculated using GBT and/or finite-strip code CUFSM. These numerical results are consistent with the model calculations for channel section with and without stiffeners. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Mechanical Science & Technology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)