Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Simulation is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.