In-car speed estimations with real, virtual, and no view.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      • To make simulators feel real, perceived simulator and real motion should match. • We tested whether speed estimated in km/h could be a valid metric for that purpose. • Not finding differences between real, virtual and no view, disqualifies the metric. • Results may be understood by discriminating perception from cognition. Car handling, and hence, safety, is affected by the way we estimate speed. Speed, however, is often underestimated in degraded visual environments, including virtual environments such as driving simulators. In simulators the visual and physical motion are typically incongruent as limited by quality and amplitude, respectively, which may cause a negative transfer of training. To improve the (training) quality of simulators and make them feel more real, it would be helpful to fill a knowledge gap on in-car speed perception as affected by real and virtual views, within a single group of subjects. We did so by testing whether estimations of speed in terms of km/h could be a valid metric for that purpose. We therefore exposed 17 subjects, seated as passengers in the front of a car on a straight road to four experimental conditions: (1) driving with a real out-the-window view, (2) driving with a live video view, (3) standing still watching pre-recorded video's, and (4) driving with eyes closed. Field-of-view was made equal in all conditions. Speeds tested ranged between 20 and 60 km/h. On average, speed was estimated 5 km/h less than actual, while we did not find a statistically significant difference between the four conditions tested. These results seem to contradict previous observations on motion perception, in particular in simulators, that have been ascribed to the quality of the visuals used. This finding may yet be explained by the assumption that speed estimations in terms of km/h are dominated by (conscious) cognitive processes, while visual-vestibular coherence between visual and physical motion, is dominated by (unconscious) sensorial driven perceptual processes. This disqualifies perceived speed as a valid metric for studying motion perception related to the optimisation of simulators. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Displays is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)