Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Summary: Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight‐stranded β‐barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O‐polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O‐polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O‐polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division. We have characterized a conserved protein of unknown function, which we have named EipA. EipA plays a role in maintenance Brucella cell envelope integrity and is genetically linked to O‐polysaccharide synthesis. EipA influences features of the envelope that are important for Brucella spp. replication and survival in the host intracellular niche. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Molecular Microbiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)