Thermodynamic considerations of screening halide molten-salt electrolytes for electrochemical reduction of solid oxides/sulfides.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Molten salt is an indispensable electrolyte for electrochemically extracting reactive metals that cannot be obtained by a carbothermic reduction or a low-cost metallothermic reduction route. The choice of the molten salt is highly related to its thermodynamic properties, electrode materials, and the interactions of oxides/sulfides with the molten salts. Herein, thermodynamic properties of molten chlorides fitted with a solid oxide/sulfide cathode are systematically studied in terms of the electrochemical window, the exchange reactions between the oxides/sulfides and the electrolytes, and the role of cations/anions governing the deposition potential of various species in a unary molten salt or a molten-salt mixture. Thermodynamically, the choice of a molten salt for electrolysis should combine the electrochemical window of a molten salt and the in situ formed most stable oxides/sulfides possessing cations from the molten salt itself. This paper sets a guideline for screening molten salts for electrochemical reduction of solid oxides/sulfides and sheds light on the design of an appropriate salt melt for material synthesis. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Solid State Electrochemistry is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)