Number theory.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
Share on Goodreads
  • Source:
    Columbia Electronic Encyclopedia, 6th Edition. 2021, p1-1. 1p.
  • Additional Information
    • Abstract:
      Number theory, branch of mathematics concerned with the properties of the integers (the numbers 0, 1, −1, 2, −2, 3, −3, …). An important area in number theory is the analysis of prime numbers. A prime number is an integer p>1 divisible only by 1 and p; the first few primes are 2, 3, 5, 7, 11, 13, 17, and 19. Integers that have other divisors are called composite; examples are 4, 6, 8, 9, 10, 12, … . The fundamental theorem of arithmetic, the unique factorization theorem, asserts that any positive integer a is a product (a = p1 · p2 · p3 · · · pn) of primes that are unique except for the order in which they are listed; e.g., the number 20 is the product 20 = 2 · 2 ·5, and it is unique (disregarding order) since 20 has this and only this product of primes. This theorem was known to the Greek mathematician Euclid, who proved that there are infinitely many primes. Analytic number theory has given a further refinement of Euclid's theorem by determining a function that measures how densely the primes are distributed among all integers. Twin primes are primes having a difference of 2, such as (3,5) and (11,13). The modern theory of numbers made its first great advances through the work of Leonhard Euler, C. F. Gauss, and Pierre de Fermat. It remains a major area of mathematical research, to which the most sophisticated mathematical tools have been applied. [ABSTRACT FROM PUBLISHER]
    • Abstract:
      Copyright of Columbia Electronic Encyclopedia, 6th Edition is the property of Columbia University Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
HoldingsOnline