Calibrated Bayes factors for model comparison.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      A Bayes factor between two models can be greatly affected by the prior distributions on the model parameters. When prior information is weak, very dispersed proper prior distributions are known to create a problem for the Bayes factor when competing models differ in dimension, and it is of even greater concern when one of the models is of infinite dimension. Therefore, we propose an innovative method which uses training samples to calibrate the prior distributions so that they achieve a reasonable level of 'information'. Then the calibrated Bayes factor can be computed over the remaining data. This method makes no assumption on model forms (parametric or nonparametric) and can be used with both proper and improper priors. We illustrate, through simulation studies and a real data example, that the calibrated Bayes factor yields robust and reliable model preferences under various situations. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Statistical Computation & Simulation is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)