Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Traits drive global wood decomposition rates more than climate.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Hu, Zhenhong; Michaletz, Sean T.; Johnson, Daniel J.; McDowell, Nate G.; Huang, Zhiqun; Zhou, Xuhui; Xu, Chonggang
- Source:
Global Change Biology; Nov2018, Vol. 24 Issue 11, p5259-5269, 11p, 1 Chart, 3 Graphs
- Subject Terms:
- Additional Information
- Abstract:
Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), whereas only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition. Wood traits (nitrogen content and diameter) are stronger predictors of variation in wood decomposition rates than climate variables (air temperature, precipitation, and relative humidity). Importantly, about half of the global variation in decomposition rates is explained by wood traits, while only a fifth is explained by climate variables, contradicting traditional views that climate is thought as the primary control on decomposition rates at broad spatial scales. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Global Change Biology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.