Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Abstract: Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti‐related peptide (AgRP) and anorexigenic pro‐opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral‐mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real‐time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression. Immunoprecipitation of assembled nAChRs revealed that the β4 subunit forms assembled channels with α3, β2 and α4, but not other subunits found in the ARC. Finally, using cell type‐selective, virally delivered small hairpin RNAs targeting either the β4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of European Journal of Neuroscience is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)