Delocalising the parabolic Anderson model through partial duplication of the potential.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The parabolic Anderson model on Zd with i.i.d. potential is known to completely localise if the distribution of the potential is sufficiently heavy-tailed at infinity. In this paper we investigate a modification of the model in which the potential is partially duplicated in a symmetric way across a plane through the origin. In the case of potential distribution with polynomial tail decay, we exhibit a surprising phase transition in the model as the decay exponent varies. For large values of the exponent the model completely localises as in the i.i.d. case. By contrast, for small values of the exponent we show that the model may delocalise. More precisely, we show that there is an event of non-negligible probability on which the solution has non-negligible mass on two sites. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Probability Theory & Related Fields is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)