Whole-Genome Analysis of Bacillus thuringiensis Revealing Partial Genes as a Source of Novel Cry Toxins.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Despite the successful application of crystal proteins (Cry) from Bacillus thuringiensis as biological control agents against insects, there is an increasing demand to identify new Cry toxins having higher toxicity and broad-spectrum activity against insects and plant-parasitic nematodes. To find novel Cry toxins, we screened 100 whole-genome sequences of B. thuringiensis. Surprisingly, in addition to full Cry toxins, we found partial sequences, such as typical N-terminal or C-terminal regions with conserved domains, widely distributed among 20 strains of B. thuringiensis. In order to further elucidate the functions of partial genes, here, we selected a partial sequence from strain C15, having 28% similarity with the N terminus of Cry5Ba and lacking a typical C terminus, and denoted it Cry5B-like N terminus. This fragment when coexpressed as a fusion protein with the C terminus of Cry5Ba (N-C fusion protein) produces pyramidal crystals. A recombinant N-C fusion protein having a 50% lethal concentration (LC50) of 23.7 J-g/ml severely affected the life span, growth, and survival rate of nematodes. Light microscopy showed damage to the intestine of nematodes, confirming the pathogenicity of the N-C fusion protein. Last, the green fluorescent protein (GFP)-labeled mutant Caenorhabditis elegans FT63 showed significant damage to the intestine upon feeding N-C fusion toxin compared to the control. These results imply that partial genes can be a source of new Cry toxins, and further understanding about functions of partial cry genes can help in the study of the evolutionary strategy of B. thuringiensis to produce the multidomain toxins. IMPORTANCE Genomic analysis revealed that coding sequences for N termini and C termini of crystal proteins are widely distributed in B. thuringiensis. We found Cry5B-like N terminus, lacking typical C terminus, was unable to be expressed in wild-type strain C15. However, its fusion with the C terminus of Cry5Ba not only was successfully expressed but also exhibited activity against the nematodes. This study provides insight into a potential source for novel Cry toxins. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Applied & Environmental Microbiology is the property of American Society for Microbiology and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)