MEA Viewer: A high-performance interactive application for visualizing electrophysiological data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Action potentials can be recorded extracellularly from hundreds of neurons simultaneously with multi-electrode arrays. These can typically have as many as 120 or more electrodes. The brief duration of action potentials requires a high sampling frequency to reliably capture each waveform. The resulting raw data files are therefore large and difficult to visualize with traditional plotting tools. Common approaches to deal with the difficulties of data display, such as extracting spike times and performing spike train analysis, are useful in many contexts but they also significantly reduce data dimensionality. The use of tools which minimize data processing enable the development of heuristic perspective of experimental results. Here we introduce MEA Viewer, a high-performance open source application for the direct visualization of multi-channel electrophysiological data. MEA Viewer includes several high-performance visualizations, including an easily navigable overview of recorded extracellular action potentials from all data channels overlaid with spike timestamp data and an interactive raster plot. MEA Viewer can also display the two dimensional extent of action potential propagation in single neurons by signal averaging extracellular action potentials (eAPs) from single neurons detected on multiple electrodes. This view extracts and displays eAP timing information and eAP waveforms that are otherwise below the spike detection threshold. This entirely new method of using MEAs opens up novel research applications for medium density arrays. MEA Viewer is licensed under the General Public License version 3, GPLv3, and is available at . [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)