A sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Alternate Title:
      Un enfoque basado en escasez para la detección de objetivos en imágenes espectrales a partir de medidas compresivas adquiridas por la arquitectura CASSI.
    • Subject Terms:
    • Abstract:
      La adquisición y procesamiento de imágenes espectrales involucra el manejo de grandes cantidades de información espectral multidimensional. Su adquisición, procesamiento y almacenamiento son costosos temporal, computacional y económicamente. En los últimos años se han desarrollado arquitecturas ópticas para la adquisición de información espectral de forma comprimida usando un conjunto reducido de mediciones codificadas por un modulador espacial. Este trabajo busca formular un esquema de procesamiento que permita utilizar las mediciones adquiridas por dichos sistemas de muestreo compresivo para efectuar detección espectral de objetivos, se adaptaran algoritmos de detección tradicionales para ser usados en el modelo de muestreo compresivo y se mostrara que su desempeño es comparable al obtenido en procesos de detección sin compresión. alabras Clave Imágenes hiperespectrales; Muestreo compresivo; Detección de objetivos; Modelo de escasez Introduction [ABSTRACT FROM AUTHOR]
    • Abstract:
      Hyperspectral imaging requires handling a large amount of multidimensional spectral information. Hyperspectral image acquisition, processing and storage are computationally and economically expensive and in most cases, slow processes. In recent years, optical architectures have been developed for acquisition of spectral information in compressed form by using a small set of measurements coded by a spatial modulator. This work formulates a processing scheme that allows the measurements acquired by such compressive sampling systems to be used to perform spectral detection of targets by adapting traditional detection algorithms for use in the compressive sampling model and shows that the performance is comparable with that obtained by detection processes without compression. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Ingeniería y Universidad is the property of Pontificia Universidad Javeriana and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)