More Than a Text Message: Dismantling Digital Triggers to Curate Behavior Change in Patient-Centered Health Interventions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Digital triggers such as text messages, emails, and push alerts are designed to focus an individual on a desired goal by prompting an internal or external reaction at the appropriate time. Triggers therefore have an essential role in engaging individuals with digital interventions delivered outside of traditional health care settings, where other events in daily lives and fluctuating motivation to engage in effortful behavior exist. There is an emerging body of literature examining the use of digital triggers for short-term action and longer-term behavior change. However, little attention has been given to understanding the components of digital triggers. Using tailoring as an overarching framework, we separated digital triggers into 5 primary components: (1) who (sender), (2) how (stimulus type, delivery medium, heterogeneity), (3) when (delivered), (4) how much (frequency, intensity), and (5) what (trigger's target, trigger's structure, trigger's narrative). We highlighted key considerations when tailoring each component and the pitfalls of ignoring common mistakes, such as alert fatigue and habituation. As evidenced throughout the paper, there is a broad literature base from which to draw when tailoring triggers to curate behavior change in health interventions. More research is needed, however, to examine differences in efficacy based on component tailoring, to best use triggers to facilitate behavior change over time, and to keep individuals engaged in physical and mental health behavior change efforts. Dismantling digital triggers into their component parts and reassembling them according to the gestalt of one's change goals is the first step in this development work. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Medical Internet Research is the property of JMIR Publications Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)