Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Assessment of Climatological Trends of Sea Level over the Indian Coast Using Artificial Neural Network and Wavelet Techniques.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
In the present study, an attempt has been made to understand the variability of mean sea level (MSL) over east and west coast of India during 1973-2010. For this purpose, the monthly tide gauge data available over Kandla, Mumbai and Cochin along west coast and Diamond Harbour, Haldia, Visakhapatnam and Chennai along east coast obtained from PSMSL data archives has been considered. Sea level data from the tide gauge records show loss of data due to any disfunctioning of equipment or upgrade of the tide gauge resulting loss of data. It requires no gaps in the time series of MSL during the study period, and needs to be filled with better accuracy and hence artificial neural networks was implemented. To examine any periodicities of MSL variability, continuous wavelet analysis was conducted. The interrelationships between the stations in time-frequency space were examined, using cross and coherence wavelet analysis as well. The study reveals notable interannual variability of MSL. An observational analysis was done to understand the relation between inter-annual variability of MSL anomalies and ENSO. During positive (negative) SOI as associated with positive (negative) MSL anomaly was noticed significantly for the winter season over east (west) coast, where as during post-monsoon season this was observed for east coast and is less prevalent along the west coast. The observational analysis revealed that for the west (east) coast positive IOD showed significantly increased (decreased) MSL anomalies and negative IOD showed significantly decreased (increased) MSL anomalies. It is also found that the concurrent ENSO and IOD may have a different impact on MSL. The observations also reveal an increase of 1.353 mm/year on the east coast and observed a total 0.372 mm/year on the west coast. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Pure & Applied Geophysics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.