research paper Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Due to their role in oxygen transport and the presence of redox active haemoglobin molecules, red blood cells (RBC) generate relatively high levels of reactive oxygen species (ROS). To counteract the potential deleterious effects of ROS, RBCs have a well-integrated network of anti-oxidant mechanisms to combat this oxidative stress. ROS formation is increased in sickle-cell disease (SCD) and our studies in a murine SCD model showed a significant increase in the generation of ROS when compared with normal mice. Our data also indicated that murine sickle RBCs exhibit a significantly increased ATP catabolism, partly due to the increased activity of glucose-6-phosphate dehydrogenase and glutathione reductase to regenerate intracellular glutathione (GSH) levels to neutralize the adverse milieu of oxidative stress. Higher ATP consumption by the murine sickle RBCs, together with the increased ROS formation and impairment of the aminophospholipid translocase or flipase may underlie the exposure of phosphatidylserine on the surface of these cells. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of British Journal of Haematology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)