Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0360051 Publication Model: Print Cited Medium: Print ISSN: 0022-2844 (Print) Linking ISSN: 00222844 NLM ISO Abbreviation: J Mol Evol Subsets: MEDLINE
- Publication Information:
Original Publication: Berlin, New York, Springer-Verlag.
- Subject Terms:
- Abstract:
Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar.
- Accession Number:
0 (Alcohols)
0 (Protein Subunits)
EC 1.1.1.1 (Alcohol Dehydrogenase)
EC 1.14.19.- (Fatty Acid Desaturases)
EC 1.3.1.- (short chain trans-2-enoyl-CoA reductase)
EC 1.6.- (NADH, NADPH Oxidoreductases)
EC 2.3.1.85 (Fatty Acid Synthases)
- Publication Date:
Date Created: 20010710 Date Completed: 20010816 Latest Revision: 20131121
- Publication Date:
20231215
- Accession Number:
10.1007/s002390010175
- Accession Number:
11443349
No Comments.