Construction of High-Density Linkage Maps of Populus deltoides × P. simonii Using Restriction-Site Associated DNA Sequencing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Although numerous linkage maps have been constructed in the genus Populus, they are typically sparse and thus have limited applications due to low throughput of traditional molecular markers. Restriction-site associated DNA sequencing (RADSeq) technology allows us to identify a large number of single nucleotide polymorphisms (SNP) across genomes of many individuals in a fast and cost-effective way, and makes it possible to construct high-density genetic linkage maps. We performed RADSeq for 299 progeny and their two parents in an F1 hybrid population generated by crossing the female Populus deltoides ‘I-69’ and male Populus simonii ‘L3’. A total of 2,545 high quality SNP markers were obtained and two parent-specific linkage maps were constructed. The female genetic map contained 1601 SNPs and 20 linkage groups, spanning 4,249.12 cM of the genome with an average distance of 2.69 cM between adjacent markers, while the male map consisted of 940 SNPs and also 20 linkage groups with a total length of 3,816.24 cM and an average marker interval distance of 4.15 cM. Finally, our analysis revealed that synteny and collinearity are highly conserved between the parental linkage maps and the reference genome of P. trichocarpa. We demonstrated that RAD sequencing is a powerful technique capable of rapidly generating a large number of SNPs for constructing genetic maps in outbred forest trees. The high-quality linkage maps constructed here provided reliable genetic resources to facilitate locating quantitative trait loci (QTLs) that control growth and wood quality traits in the hybrid population. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)